Пиролиз древесины: описание процесса, сырье, состав газа

Пиролиз древесины еще называют сухой перегонкой. Этот процесс представляет собой разложение древесины в условиях высокой температуры в пределах 450 °C без доступа кислорода. Вследствие такого процесса получаются газообразные и жидкие (в том числе древесная смола) продукты, а также твердый материал — древесный уголь.

Технология пиролиза древесины

Пиролиз является одним из первых технологических химических процессов, которые известны человечеству. Еще в середине XII века этой технологией активно пользовались для получения сосновой смолы, которую применяли для пропитки канатов и просмолки деревянных кораблей. Этот процесс тогда называли смолокурением.

С началом развития металлургической отрасли, возник иной промысел, основанный на сухом пиролизе лесоматериалов, — углежжение. В этом процессе конечным материалом являлся древесный уголь.

Началом распространения промышленного использования пиролиза дерева можно называть XIX век. Основным продуктом пиролиза в те времена была уксусная кислота.

Сырьем служили лишь лесоматериалы лиственных сортов.

Процесс пиролиза основывается на разных свободно-радикальных реакциях термодеструкции целлюлозы, лигнина и гемицеллюлоз. Эти реакции происходят в условиях температур от 200 до 400°C. Пиролиз древесины является экзотермическим процессом, в ходе которого получается большой объем тепла (примерно 1150кДж/кг).

Технологическая схема пиролиза лесоматериалов состоит из таких этапов:

  • измельчение древесины
  • высушивание измельченной древесины
  • пиролиз
  • охлаждение и стабилизация угля, чтобы предотвратить самовозгорания
  • процесс конденсации паров летучих продуктов.

Наиболее длительной и энергозатратной стадией можно назвать сушку древесины до уровня влажности 15%. Сушка осуществляется в условиях температуры 130-155°C при помощи подвода внешнего тепла. При этом из лесоматериалов удаляется вода, а также меняются некоторые компоненты древесины.

Пиролиз древесины: описание процесса, сырье, состав газа

Далее температура поднимается до отметки 280-455°С. В этих условиях начинается испарение и образование основного объема продуктов разложения лесоматериалов.

При этом происходит активное высвобождение тепла (экзотермический процесс) с выделением большого количества CO2, СО, CH4, эфиров, карбонильных соединений, углеводородов, уксусной кислоты, ее гомологов и метанола. В самом конце удаляется смола.

Затем начинается прокаливание древесного остатка. Температура поднимается более 500°С. Во время этого процесса выделяется и удаляется тяжелая смола, а также СО2, Н2, СО и углеводороды. Это и есть окончание пиролиза, а полученный остаток является древесным углем.

Объем полученных продуктов пиролиза древесины очень различается, все зависит от размера кусков лесоматериалов, температуры процесса, его длительности, а также уровня влажности сырья.

Устройства для осуществления пиролиза

Этот процесс протекает в ретортах. Реторта – это цельносварной металлический сосуд цилиндрической формы. Внутри он имеет диаметр от 2,5 до 2,9 м, а толщина стенок составляет 15 мм.

Вверху аппарата есть загрузочное устройство для сырья, а снизу располагается конусная часть и выгрузочное устройство для угля. Реторта имеет высоту около 25 м. Реторта оборудована четырьмя патрубками.

Через верхний патрубок выводится парогазовая смесь, через второй вводится теплоноситель, третий отводит нагретые газы из области охлаждения угля, а по четвертому, самому нижнему, вводятся холодные газы, которые охлаждают уголь.

Реторты бывают:

  • непрерывного действия
  • периодического действия
  • полунепрерывного действия.

Кроме этого по принципу обогрева бывают:

  • устройства с внутренним обогревом. В таких аппаратах тепло подается к лесоматериалам от теплоносителя в ходе прямого контакта. В качестве теплоносителя выступают горячие топочные газы, которые принудительно загружаются в устройство. В таком случае процесс пиролиза осуществляется более мягко, но объем продуктов разложения примерно в 7-10 раз меньше
  • устройства с наружным обогревом. В таких аппаратах тепло подводится посредством металлических стенок реторт, которые обогреваются горячими дымовыми газами.

Пиролиз древесины: описание процесса, сырье, состав газа

В устройствах непрерывного действия все стадии процесса происходят одновременно: в верхней части происходит сушка, далее — лесоматериалы прогреваются до температуры разложения, в средней части древесина разлагается, а в нижней — прокаливается и охлаждается уголь.

Быстрый пиролиз древесины

Довольно распространенной разновидностью пиролиза можно назвать быстрый пиролиз, в ходе которого тепловая энергия подводится к исходной смеси на высокой скорости. Весь процесс протекает без доступа кислорода.

Процесс медленного пиролиза сравним доведением воды до точки кипения, а вот метод быстрого пиролиза можно сравнить с попаданием в раскаленное масло капли воды, которое иначе называется взрывное вскипание.

Главные особенности быстрого пиролиза лесоматериалов:

  • возможность формирования замкнутого непрерывно текущего технологического производственного процесса
  • значительная «чистота» конечных продуктов пиролиза, которая достигается вследствие отсутствия стадии осмоления
  • низкая энергоемкость подобного процесса, по сравнению с прочими видами пиролиза
  • в этой процессе выделяется большое количество тепловой энергии (экзотермические реакции при быстром пиролизе превосходят эндотермические).

Продукты пиролиза древесины

Сегодня для реализации процесса пиролиза лесоматериалов чаще всего используют лиственные сорта, однако иногда, в ходе комплексной переработки сырья, применяется и древесина хвойных сортов. Конечные продукты пиролиза и их количество зависит от вида древесины. К примеру, из березы можно получить:

  • 24-25% древесного угля
  • 50-55% жидких отходов (жижки) 
  • 22-23% газообразных продуктов. 

Чем крупнее куски лесоматериалов, тем больше получается твердого остатка.

В ходе переработки жижки, осуществляется отстаивание древесной смолы, ее около 7-10%. В это же время происходят разнообразные превращения компонентов. Из смолы выделяют большое количество ценных продуктов. Чаще всего, это уксусная кислота. Ее получают методом экстракции, с дальнейшей ректификацией и тщательной химической очисткой. После этих действий получается пищевой продукт.

Среди газообразных продуктов пиролиза:

  • 45-55% диоксида углерода CO2 
  • 28-32% оксида углерода CO 
  • 1-2% водорода H2
  • 8-21% метана CH4 
  • 1,5-3,0% прочих углеводородов.

Технологии пиролиза древесины довольно разнообразны. Тем не менее, большая часть применяемых в мировой практике аппаратов полностью устарела и не отвечает всем современным требованиям.

Помимо этого, необходимость в пиролизе лесоматериалов все время снижается, потому что уничтожать столь экологичное сырье довольно расточительно.

В тоже время сегодня набирает популярность технология пиролиза опилок.

Выход продуктов термораспада

СырьеПродукты термораспада, масс. % от массы а. с. д.угольсмолылегколетучиекомпонентыгазывода
Ель древесина 37,9 15,3 6,3 18,2 22,3
кора 42,5 18,4 1,9 19,8 17,4
Сосна древесина 38,0 16,7 6,2 17,7 21,4
кора 40,5 18,2 5,7 19,7 15,9
Береза древесина 33,6 14,3 12,3 17,0 22,8
кора 37,9 24,0 4,7 18,6 14,8
Осина древесина 33,0 16,0 7,3 20,4 23,3

Пиролиз древесины | Справочник | Инженерные системы

Воспламенение и горение древесины есть следствие её нагрева до высоких температур в воздухе. В холодном состоянии древесина воздухом не окисляется.

При нагреве древесина термически разрушается с образованием легкогорючих веществ, которые могут воспламеняться и поддерживать дальнейшее горение древесины.

Поэтому для правильного понимания процессов горения необходимо знать как термически разрушается древесина.

Первичное термическое разрушение древесины происходит внутри полена, а значит без доступа воздуха (ввиду слабой газопроницаемости древесины). Термическое разрушение древесины в инертной среде (без доступа кислорода воздуха или иных окислителей) называется термической деструкцией, термическим разложением или пиролизом.

В дальнейшем мы будем для краткости пользоваться термином «пиролиз», хотя сразу оговоримся, что «pyr» по-гречески означает огонь, и поэтому точнее было бы понимать под термином «пиролиз» разрушение в огне (то есть при горении в кислороде), а не разрушение в инертном газе.

Так, например, в лесоведении «пирологией» называют науку о лесных пожарах и и вызываемых ими изменениях в лесу.

При нагревании древесины без доступа воздуха (такой процесс называется «сухой перегонкой») сначала при температурах 100-150°С происходит полное испарение всей свободной и связанной (гигроскопической) воды, затем при 150-275°С происходит начальный пиролиз с потреблением теплоты.

При температурах 275-450°С происходят главные реакции распада веществ древесины, причём с бурным выделением тепла (с саморазогревом древесины). Наконец, при 450-550°С происходит последняя стадия пиролиза, требующая подвода теплоты извне и заканчивающаяся образованием древесного угля, сохраняющего анатомическое строение древесины.

Промышленный древесный уголь по ГОСТ 7657-84 имеет «кажущуюся» (в воде) плотность 370 кг/м³, насыпную плотность после размола 210 кг/м³, температуру воспламенения 340°С, НКПВ пыли 128 г/м³, ПДК пыли 6 мг/м³.

Древесный уголь в форме реальных «углей» (в виде обугленного слоя на древесине) имеет плотность 190 кг/м³, насыпную плотность (104-180) кг/м³, коэффициент теплопроводности 0,074 Вт/м•град. В результате всего цикла пиролиза образуется древесный уголь, жижка и горючие газы. Жижка при отстаивании разделяется на два слоя — верхний водный и нижний смоляной.

 Из водного слоя впоследствии выделяют уксусную кислоту, метиловый спирт, ацетон и другие продукты. Из смоляной части выделяют дёготь, жидкие топлива, антисептик креозот, которым пропитывают железнодорожные шпалы. Выход углей, жижки и газов составляет по массе соответственно 33%, 52% и 15% для берёзы и 38%, 44% и 18% для сосны.

Читайте также:  Паркетная доска: укладка своими руками, видео
Пиролиз древесины: описание процесса, сырье, состав газа
Рис. 92. Химическая структура древесины и некоторых продуктов пиролиза (исходные и конечные продукты пиролиза древесины). Состав гимицеллюлозы приведён для гексозной части (пентозная часть содержит в кольце 5 углеродных атомов).

Древесина состоит из трёх типов натуральных полимеров — длинноцепной целлюлозы, короткоцепных гемицеллюлоз (пентоз из пятичленных колец и гексоз из шестичленных колец) и лигнина, состоящего из бензольных колец (рис. 92).

Пиролиз любых органических соединений идёт через разукрупнение (дробление, деление, разрыв, крекинг) молекул (и цепей молекул) с отделением кислородных соединений углерода, летучих углеводородов, молекул водорода и воды. Одновременно идёт агрегация углеводородных остатков в углерод через формирование бензольных колец C6H6 (рис.

92), которые объединяются в двойные бензольные кольца (нафталиновые), затем в тройные (антраценовые) и так далее вплоть до сеток колец (микрокристаллов графита, а также высших непредельных углеводородов CnHm). При пиролизе твёрдых углеводородов образуется кокс (в случае каменного угля) или древесный уголь (в случае древесины).

При пиролизе углеводородных газов (метана, пропана и т. п.) и паров углеводородных жидкостей (бензина, керосина, бензола и т. п.) образуется газовзвесь мелких углеродных частиц (чёрный дым), при осаждении дающая сажу (копоть).

В любом случае образуется углерод в так называемой аморфной форме — в виде микрокристаллического (рентгеноаморфного) графита, имеющего связи с С-Н, а потому легковоспламеняющегося. Наибольшее дымление даёт лигнин (которого очень много в коре берёзы), но лигнин даёт и в 1,5 раза больше тепла при сгорании, чем целлюлоза.

Считается, что пиролиз начинается с пентозной части гемицеллюлоз и лигнина. Наибольшую вероятность обугливания имеет лигнин, поскольку он уже содержит в своём составе бензольные кольца (рис. 92). В этом легко убедиться.

Достаточно положить на разогревающуюся чугунную плиту дровяной печи (или комфорку кухонной электроплиты) оразец древесины (например, обычную осиновую спичку без головки) и образец материала из практически чистой целлюлозы — хлопка, льна, бумаги (непроклееных сортов, например, туалетной).

Хлопок (в виде ваты или марли) начинает буреть при 220-240°С (именно поэтому максимальная стандартная температура утюгов устанавливается равной 220°С).

Выделяющихся горячих газов глазами не видно, поскольку они абсолютно прозрачны и бесцветны (как воздух) вплоть до плазменных температур 5000-7000°С, а химических реакций горения, которые могли бы окрасить газ, пока нет (температуры самовоспламенения газов превышают 450°С).

При температурах 320-340°С хлопок начинает чернеть и комкуется (сжимается), над хлопком появляется белый дымок — это пары выделяющихся труднокипящих жидкостей конденсируются в холодном воздухе, превращаясь в туман. Самовоспламенение в виде появления тления обугленного остатка наблюдается при температуре выше 440°С.

Древесина (осиновая спичка) начинает буреть уже при температурах 180-190°С, начинает выделяться белый дымок (туман жидкостей) при 230-250°С, а при 300°С становится абсолютно чёрной с полным сохранением исходной формы спички. Это указывает, что сажа от разложения лигнина оседает на каркасе целлюлозы. Поскольку именно лигнин вызывает раннее выделение горючих газов и сажи, удаление лигнина гидролизом снижает пожароопасность и дымление древесины. Так. известно, что некоторые народы в древности для обогрева курных помещений использовали именно вымоченный в реке, а затем тщательно высушенный хворост.

Процессы пиролиза, как правило, завершаются при нагреве древесины до 500-600°С. Но если продукты пиролиза заключить в герметичную ёмкость (бомбу) и нагреть их до более высоких температур, то состав продуктов пиролиза изменится.

Этот факт очень важен для анализа процессов горения, поэтому вкратце остановимся на основных особенностях вторичного пиролиза. Во-первых, жидкие и газообразные продукты первичного пиролиза разрушаются до простейших соединений (Н₂O,СO₂, СО, Н₂ и т. п.

) и добавочного количества углерода как в форме древесного угля, так и в виде сажи (в том числе и в виде дыма). При этом даже метан образует сажу именно через бензольные кольца. Во-вторых, древесный уголь (углерод) начинает газифицироваться — реагировать с водяными парами С+Н₂О ↔ CO+H₂.

Количество воды в продуктах пиролиза очень велико, что видно хотя бы из того, что балансовую химическую формулу целлюлозы и гемицеллюлозы (С6Н10О5) можно представить в виде (С6(Н20)5)n, то есть комбинации (смеси) углерода и воды (поэтому целлюлозу называют углеводом).

Приведём расчётный состав продуктов реакции газификации углерода в синтез-газ С+Н₂О→СО+Н₂ в условиях атмосферного давления газовой фазы рₒ=р(Н₂О)+р(СО)+р(Н₂) =1 атм, где р(Н₂О), р(СО) и р(Н₂) — парциальные давления водяных паров, окиси углерода (угарного газа) и водорода соответственно:

Температура, °С 700 800 900 1000 1100
Температура, °K 973 1073 1173 1273 1373
р(Н₂О) в % об. (10⁻² атм) 90,66 65,94 29,38 8,1 2,08
р(СО) в % об. (10⁻² атм) 4,67 17,03 35,31 45,95 48,96
р(Н₂) в % об. (10⁻² атм)

Приведённые численные данные могут быть легко перечитаны на другие давления газовой среды рₒ, исходя из соотношений равновесия p(C) •p(H₂O) = K₁(T) •p(CO) •p(H₂0), где р(С) — давление паров углерода (зависит только от температуры), K₁(T) — коэффициент равновесия реакции (зависит только от температуры), р(СО) = р(H₂O). При этом можно показать, что p(H₂O)/p(CO) = A₁(f₁(T)pₒ)¹/², где f₁(T) = K₁(T)/p(C), A₁ — коэффициент пропорциональности. Таким образом, снижение давления ро (то есть уменьшение количества воды) приводит к сдвигу реакции вправо (то есть к более высокому преобразованию Н₂О в СО).

В-третьих, древесный уголь (углерод) начинает газифицироваться в ходе реакции С+СО₂ ↔ 2СО. Приведём расчётный состав продуктов реакции при давлении газовой среды рₒ = р(СО₂)+(СО)=1 атм:

Температура, °С 600 700 800 900 1000 1100 1200
Температура, °K 873 973 1073 1173 1273 1373 1473
р(CO₂) в % об. (10⁻² атм) 99,86 98,38 90,05 64,7 27,2 8 2
р(СО) в % об. (10⁻² атм) 0,14 1,62 9,95 35,3 72,8 92 98

Пересчёт на другие давления ведётся по соотношениям р(С)р(СО₂)=K₂(Т)р²(СО), f₂(T)=K₂(T)/p(C). При этом р(СО₂)/р(СО) =A₂(f₂(T)pₒ)¹/², то есть снижение давления рₒ сдвигает реакцию вправо.

В целом, реакция углерода с СО₂ (углекислым газом) начинается примерно при температурах на 100°С выше, чем реакция с Н₂О (водой), а учитывая, что воды в продуктах пиролиза намного больше, чем углекислого газа, то реакция газификации водой является ведущей.

Продукты высокотемпературного «вторичного» пиролиза, состоящие преимущественно из СО и Н₂, называются синтез-газом или газогенераторными газами.

Такие газы вырабатывались в первой половине XX века в огромных масштабах для лесохимических производств, отопления, а также для использования в качестве топлива в двигателях внутреннего сгорания.

До сих пор часто вспоминают довоенные советские грузовики-полуторки с бортовыми газогенераторами, вырабатывавшими для своего двигателя горючий синтез-газ из древесных чурок длиной сантиметров десять, которые по государственному план-заказу (разнарядке) заготавливались колхозами в огромных количествах.

Характер термического разрушения древесины при температурах ниже 300-350°С практически не зависит от того, в инертной среде или воздушной ведётся нагрев древесины. При более высоких температурах уже возможны процессы дополнительного окисления свободным кислородом CnHmOk +O₂ ® СО₂+Н₂О, в том числе аморфного углерода по реакции С+О₂ ® CO₂.

Пиролиз называется окислительным в том случае, когда количество вводимого кислорода настолько мало, что теплота окисления остаётся намного меньшей, чем подвод тепла для пиролиза извне.

Если же количество подводимого кислорода уже начинает обеспечивать большую величину теплового эффекта окисления, то окислительный пиролиз приобретает название горения.

В заключение напомним, что сухая безводная окись углерода СО (угарный газ) практически не реагирует с кислородом О₂ до температуры 700°С. Выше 700°С протекает медленная гетерогенная реакция, то есть реакция идёт не в объёме, а с первоначальной сорбцией СО на поверхности твёрдых материалов.

Причём некоторые вещества способны существенно снизить температуру окисления СО (например, в составе катализаторов для очистки выхлопных газов автомобилей от угарного газа).

На скорость окисления углерода сильно влияет присутствие даже небольших количеств водяного пара или водорода, при этом реакция может стать даже гомогенной (в объёме) вне поверхностей твёрдых материалов.

Источник: health.totalarch.comДачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

Пиролиз древесины: понятие и продукты

Пиролиз древесины (сухая перегонка древесины) это разложение древесины при ее нагревании до температуры 450 °C без доступа кислорода. В результате данного процесса образуются газообразные и жидкие (в том числе древесная смола смолы) продукты, а также твердый остаток — древесный уголь.

Читайте также:  Размеры вагонки: толщина, ширина, длина

Технология и процесс пиролиза древесины это один из первых технологических химических процессов, известных человечеству. Начиная с середины XII века, данную технологию широко использовали в нашей стране для выработки сосновой смолы (которая использовалась для пропитки канатов и просмолки деревянных судов). Данный промысел тогда носил название смолокурение.

Когда начала развиваться металлургия, возник другой промысел, который также был основан на сухой пиролизе древесины, — углежжение. В данном случае конечным продуктом пиролиза был древесный уголь.

Начало распространения промышленного применения пиролиза древесины можно считать XIX век.

Главным продуктом пиролиза тогда была уксусная кислота, а в качестве сырья использовалась только древесина лиственных пород.

В основе процесса пиролиза древесины лежат различные свободнорадикальные реакции термодеструкции целлюлозы, лигнина и гемицеллюлоз, протекающие при температурах от 200 до 400°C. Пиролиз древесины это экзотермический процесс, при котором образуется довольно большое количество теплоты (около 1150кДж/кг).

Технологическая схема пиролиза древесины включает в себя следующие этапы:

  • разделка древесного сырья на куски
  • сушка разделанной древесины
  • непосредственно пиролиз
  • охлаждение и стабилизация угля (для предотвращения самовозгорания);
  • полная конденсация паров летучих продуктов.

Самой продолжительной и энергоемкой стадией из всех перечисленных выше является сушка древесины до влажности 15%.

Продукты пиролиза древесины

В настоящее время для осуществления процесса пиролиза древесины обычно применяют лиственные породы, но иногда (главным образом во время комплексной переработки сырья) используют и древесину хвойных пород. Современные технологии пиролиза позволяют получить из древесины березы:

  • древесный уголь — 24-25% древесного угля,
  • жидкие отходы (так называемая жижка) — 50-55%
  • газообразные продукты — 22-23%

Чем больше будет размер взятых для пиролиза кусков древесины, тем крупнее получится твердый остаток. Полученный в результате пиролиза древесный уголь после процедуры сортировки по размеру кусков направляется непосредственно потребителю, либо на переработку.

При переработке жижки, полученной в результате пиролиза, отстаивается древесная смола (которой примерно 7-10%) и одновременно с этим протекают многочисленные превращения компонентов.

Из смолы можно выделить широкий ассортимент ценных продуктов. Как правило, из жижки выделяют уксусную кислоту.

Ее как правило извлекают из жижки экстракцией, и затем, путем ректификации и тщательной химической очистки перерабатывают в готовый к реализации пищевой продукт.

Газообразные продукты пиролиза древесины (неконденсирующиеся газы) включают в себя:

  • диоксид углерода CO2 (примерно 45-55%)
  • оксид углерода CO (28-32%)
  • водород H2 (1-2%)
  • метан CH4 (8-21%)
  • другие углеводороды (1,5-3,0%).

Состав газообразных продуктов пиролиза древесины зависит от температуры пиролиза, скорости и от способа нагрева. Теплота сгорания газообразных продуктов колеблется в диапазоне величин от 3,05 до 15,2 МДж/м³. Все перечисленные выше факторы, а также порода древесины, ее качество и влажность определяют конечный выход продуктов пиролиза.

С увеличением температуры возрастает выход древесной смолы и газообразных продуктов, но снижается выход древесного угля, спиртовых продуктов и уксусной кислоты. Уголь в результате увеличения температуры образуется с более высоким процентным содержанием углерода. Средний выход главных продуктов пиролиза древесины составляет (из расчета на сухую древесину):

  • древесный уголь — 23-24%
  • древесная смола — 10-14%
  • уксусная кислота — 5-7%

Техника пиролиза древесины достаточно разнообразна, однако большинство используемых в мировой практике устройств безнадежно устарело и не отвечает всем современным требованиям.

Кроме этого, необходимость в пиролизе древесины постоянно падает, поскольку уничтожать такое экологически чистое сырье достаточно расточительно.

Однако, технология пиролиза древесных опилок начинает пользоваться все большей популярностью.

Пиролиз древесных опилок

Пиролиз древесных опилок является наиболее выгодным способом утилизации древесных отходов. Благодаря данной технологии, отходы деревообрабатывающей промышленности можно не везти на полигон отходов для захоронения, а использовать для выработки тепло и электроэнергии.

В последние годы подобное использование древесных отходов начало рассматриваться как великолепная альтернатива традиционным видам топлива. Все это напрямую связано с тем, что древесные опилки в качестве топлива обладают рядом преимуществ:

  • они относятся к возобновляемым источникам тепловой энергии
  • являются абсолютно CO2-нейтральными
  • в составе опилок практически нет серы
  • существует возможность сжигать влажные отходы (содержащие до 55 — 60% влаги)
  • коррозионная агрессивность дымовых газов довольно низка
  • низкая, в сравнении с ископаемым топливом, цена сырья

Использование древесных отходов в качестве топлива не только гораздо меньше вредит окружающей среде, а еще и служит источником экономии средств.

Этот путь экономии невосстанавливаемых природных ресурсов способен позволить России приблизиться к более развитым странам по такому показателю как удельная энергоемкость промышленного производства, что делает его крайне привлекательным.

И все это ведет к тому, что технологии пиролиза древесных опилок в последние годы постоянно развиваются и совершенствуются.

Первичные продукты пиролиза древесины

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ЛЕСОХИМИЧЕСКИХ ПРОИЗВОДСТВ

Газообразные, жидкие и твердые продукты пиролиза древе­сины состоят, как и исходная древесина, из трех основных эле­ментов— углерода, водорода и кислорода, в них содержится также незначительное количество азотсодержащих веществ.

Газы. Состав газов, образующихся при пиролизе древесины, мало зависит от породы дерева.

Их состав при переугливании древесины при 400 °С (в объ­емных %) приведен ниже.

Компоненты газов……………………………………………….. С02 СО СН4 С2Н4 Н2

Береза……………………………………………………………… 49,0 28,4 18,2 1,4 3,0

Сосна……………………………………………………………….. 49,5 28,5 18,0 1,0- 3,0

Ель…………………………………………………………………. 48,0 28,0 19,0 1,0 4,0

  • При пиролизе 1 м3 древесины образуется 75—90 м3 некон­денсирующихся газов.
  • Низшую (полезную) теплоту сгорания 1 м3 неконденсирую­щихся газов, кДж/м3, можно вычислить по формуле
  • Q„ = 127,5 СО + 108,1 Н2 + 358,8 СН4 + 604,4 С2Н4, где СО, Н2, СН4, С2Н4— объемное содержание этих газов в смеси, %.

Жидкие продукты. Конденсат, получаемый при охлаждении парогазовой смеси, образующейся при пиролизе древесины, на­зывается жижкой или сырой жижкой.

3.1. Состав жижки, полученной при пиролизе древесины в вертикальной реторте периодического действия, %

Компоненты Береза Ель
Влажностью, %
8,8 33,7 7,2 33,0
Кислоты 9,8 5,6 6,4 2,9
Метиловый спирт, .-;.у. 4,0 2,3 2,6 1,0
Сложные эфиры 4,0 3,6 3,2 2,1
Альдегиды 0,9 0,6 0,5 0,2
Кетоны «» 1,9 1,1 1,2 0,8
Смола:
Отстойная 16,5 6,7 20 4 5,6
Растворимая 17,1 4,2 12,5 5,0
Другие соединения 0,3 0,2 0,2 0,1
Вода (по разности) 45,5 75,7 53,0 82,3

Сырая жижка имеет плотность 1,02—1,03 г/см3. Она содер­жит разнообразные органические вещества как растворимые, так и нерастворимые в воде. Некоторые из нерастворимых в воде веществ способны растворяться в жижке, другие же на­ходятся в ней в суспендированном состоянии, в виде мельчай­ших взвешенных капелек.

При отстаивании они отделяются от водного слоя, образуя отстойную смолу, собирающуюся в ниж­ней части отстойника. Кроме того, при переугливании дров не­которых пород, в частности березы и осины, образуется неболь­шой слой легких масел, всплывающих на поверхность жижки и по составу близких к дегтю; эти масла образуются в основ­ном вследствие разложения коры.

Кроме отстойной смолы в жижке содержится также растворимая смола, отделяющаяся только при перегонке жижки.

Состав жижки (табл. 3.1) зависит от породы переугливае- мой древесины, ее влажности и условий ведения процесса. В ней содержатся: кислоты муравьиная, уксусная, пропионо — вая, масляная, валериановая и др.

; спирты метиловый, пропи — ловый, аллиловый и др.; кетоны ацетон, метплэтнлкетон, ме — тилпропилкетон, метилбутилкетон и др.; альдегиды формальде­гид, ацетальдегид, фурфурол и др.

; метиловые эфиры уксусной и других кислот; фенолы, эфиры фенолов и многие другие сое­динения.

Чем лучше высушена древесина, тем меньше выход жижки, но тем соответственно больше концентрация полезных компо­нентов в ней.

При переугливании березовой древесины, высу­шенной до влажности 8—10 %, выход жижки составляет 280— 295 кг/м3, из воздушносухой получается 350—380 кг/м3 жижки и т. д.

Из 1 м3 древесины березы получается больше жижки, чем из осины, поскольку березовая древесина имеет более вы­сокую плотность.

Процесс разложения сухой и влажной древесины протекает различно.

Сухая древесина, влажностью менее 10%, выделяет при разложении больше тепла в единицу времени, чем сырая; экзотермическая реакция начинается быстрее и идет более бурно, процесс ускоряется, выход угля снижается.

При разло­жении влажной древесины процесс как бы саморегулируется: температура снижается из-за большого расхода тепла на испа­рение влаги, экзотермическая реакция растягивается и скорость обугливания уменьшается, в результате чего выход кислот и угля несколько повышается.

Читайте также:  Евровагонка: что это такое, свойства, фото и видео

Казалось бы, переугливание сырой древесины более целесообразно. Однако это не так: использо­вание реторт в качестве сушильных аппаратов нерационально, а переработка низкоконцентрированной жижки требует увели­чения размеров аппаратуры и повышенных тепловых затрат.

При искусственной сушке древесины происходит испарение влаги с ее поверхности, одновременно идет продвижение влаги от более влажных, внутренних слоев древесины к менее влаж­ным, наружным.

Оба эти процесса ускоряются с повышением температуры, но второй из них протекает медленнее, что приво­дит к растрескиванию древесины и снижению физико-механи­ческих свойств получаемого из нее угля. Чтобы этого избежать, следует ограничивать температуру сушки и применять частично увлажненный теплоноситель.

Важным фактором сушки является также циркуляция теплоносителя в сушильном устройстве, не­обходимая для подвода тепла к высушиваемому материалу и отвода испаренной влаги.

Значительное повышение температуры сушки допускается при высушивании чурок в непрерывнодействующей сушилке при параллельных потоках древесины и теплоносителя. В этом случае с нагретым до 300 °С теплоносителем соприкасается наи­более влажная древесина, а частично подсушенная древесина — со значительно охладившимся теплоносителем, что предохра­няет ее от загорания.

Значительное влияние на выход продуктов, в частности ук­сусной кислоты, оказывает величина кусков древесины. Так, из чурки получается на 8 % больше уксусной кислоты, чем из метровых отрезков.

Чтобы ускорить процесс пиролиза, получить достаточно кон­центрированную жижку и снизить затраты топлива на ее пере­работку, следует использовать чурку, высушенную до влаж­ности 10—15%.

Твердые продукты (древесный уголь). При одинаковых ус­ловиях переугливания древесины различных пород уголь имеет почти одинаковый состав. С повышением температуры пере­угливания выход угля снижается, но одновременно повышается его качество (табл. 3.2); несколько снижается выход угля и при ускорении переугливания.

Уголь не должен быть пережженным или недожженным. Пережженный уголь получается при действии свободного кис-

3.2. Выход и состав древесного угля

Конечная температура выжнга угля, С Выход абсолютно сухого угля Состав угля, % Теплота
От абсолютно сухой древесины. С Н O+N Сгорания, кДж/'кг
400 39,2 76,1 4,9 19,0 32 740
450 35,0 ' 82,2 4,2 13,6 33 120
500 33,2 87,7 3,9 8,4 34 210
550 29,5 90,1 3,2 6,7 34 420
600 ■ 28,6 93,8 2,6 3,6 34 500
650 28.1 94,9 2,3 2,8 34 710
700 27.1 95,1 2,2 2,7 34 880

Лорода на раскаленный уголь, он имеет много трещин, хрупок, иногда на нем виден белесый налет.

Недожженный уголь полу­чается при недостаточной температуре или продолжительности выжига, он содержит головни, имеет бурый цвет, при сжигании горит пламенем.

Трещины снижают прочность угля, поэтому наиболее прочный уголь получается из коротких отрезков, ко­торые меньше растрескиваются в процессе сушки и пиролиза. Объем хорошо прокаленного угля составляет примерно 60 % от объема исходной древесины.

Зольность древесного угля колеблется от 1 до 4 %; при этом зольность крупного угля из древесины сухопутной доставки обычно не превышает 1,5%. Уголь, выгруженный из реторты, не содержит влаги, но поглощает ее из воздуха до влажности 10-15%.

Уголь считается хорошим, если насыпная масса 1 м3 бере­зового угля нормальной влажности не менее 175 кг, осинового 140, соснового 135, елового 120 кг.

Важной характеристикой угля является содержание неле­тучего углерода. Под нелетучим (или твердым) углеродом по­нимают остаток от кратковременного прокаливания угля в строго определенных условиях, под летучим — углерод, содер­жащийся в летучих продуктах, выделяющихся при таком про­каливании. Чем выше температура выжига угля, тем больше в нем доля нелетучего углерода.

Древесный уголь обладает высокой пористостью, чем объ­ясняются его адсорбционные свойства. Пористость угля можно определить по его плотности с учетом плотности угольной массы, равной около 1,8 г/см3.

Уголь……………………………….. Еловый Сосновый Березовый Осиновый

Плотность, г/см3 …. 0,271 0,347 0,424 0,309

Пористость, %………………………. 85 81 77 83

Древесный уголь в настоящее время рассматривают как трехмерное полимерное вещество, состоящее из связанных между собой конденсированных ароматических структур с раз­личным числом колец; эти структуры алкилированы алифати­ческими цепями, которые могут содержать различные гетеро- атомы. Чем выше конечная температура пиролиза древесины, тем больше в полученном угле ароматических соединений и тем глубже идет процесс конденсации этих соединений в полиядер­ные системы.

Выход угля можно значительно повысить, если пиролиз ве­сти с катализаторами, для чего пропитать древесину их вод­ными растворами.

Особенно эффективными являются кислотно — перекисный катализатор ЦНИЛХИ (2,5 % серной кислоты и 0,2 % перекиси водорода от массы древесины) и диаммоний — фосфат.

Катализатор ЦНИЛХИ позволяет значительно снизить температуру термораспада древесины, в несколько раз повы­сить скорость этого процесса и увеличить в 1,3—1,5 раза выход угля.

Выгруженный из реторт горячий древесный уголь поглощает кислород из воздуха, при этом он еще более разогревается, в результате чего может произойти самовозгорание угля.

Наи­большую способность к самовозгоранию имеют угли, выжжен­ные при низких температурах и содержащие до 30 % летучих веществ; температура самовозгорания таких углей ниже 150 °С.

Угли с небольшим содержанием летучих веществ могут само­возгораться при температуре выше 250 °С.

Самовозгорание дре­весного угля — результат его автоокисления, развивающегося лавинообразно, с быстрым повышением температуры под влия­нием имеющихся в угле парамагнитных центров. Это цепной разветвленный процесс, имеющий определенные критические параметры. Если при контакте угля с воздухом эти параметры не будут превышены, то уголь не воспламенится.

Исходя из этого, сделан вывод, что стабилизация горячего угля может быть осуществлена путем контролируемого охлаж­дения его воздухом на конвейере.

Оптимальные условия этого процесса: температура угля в момент выгрузки из вертикаль­ной непрерывнодействующей реторты 170 °С, высота слоя угля на конвейере 60—100 мм, продолжительность охлаждения 7 мин, температура угля, сходящего с конвейера, 70—80 °С.

В этих условиях уголь поглощает кислород из воздуха, не ра­зогреваясь, стабилизируется и теряет способность самовозго­раться. При низкой температуре окружающей среды уголь ох­лаждается слишком быстро и не успевает стабилизироваться, поэтому в зимнее время кожух конвейера должен быть тепло­изолирован.

Древесный уголь широко применяется в народном хозяйстве, в частности как металлургическое топливо и химический реа­гент в производстве ферросплавов и в цветной металлургии, для получения кристаллического кремния, для выработки се­роуглерода, для производства активных углей, для производ­ства электродов, как катализатор в контактных процессах, для изготовления карбюризатора и др. Мелкий уголь (фракция

3.3. Требования к качеству древесного угля

Показатель Марка А, сорт Марка Б, сорт Марка В
Высший 1-й 1-й 2-й
Кажущаяся плотность, 0,37 0,37 Не нормируется
Г/см:!, не менее
Массовая доля, %:
Золы не более 2,5 3,0 2,5 3,0 4,0
Нелетучего углерода не 90 78 88 77 67
Менее
Мелкого угля(с размером 5 5 7 7 7
Зерен в местах погрузки
Менее 12 мм) не более

4—12 мм) находит применение в качестве добавки к кормам животных, особенно поросят; он содержит значительное коли­чество микроэлементов, имеющих важное значение при кормле­нии молодняка.

Требования к качеству угля определены ГОСТ 7657—84 (табл. 3.3).

Для производства активных углей предназначен древесный уголь только марки А, к которому в этом случае предъявляются дополнительные требования: фракция мелкого — угля считается с размером зерен менее 25 мм (вместо 12 мм), масса 1 дм3 угля (измеряется взвешиванием определенного объ­ема измельченного угля) не менее 210 г. Содержание воды во всех марках угля не более 6%, причем по согласованию с по­требителями допускается (кроме угля высшего сорта марки А) до 20% с пересчетом фактической массы на 6%-ную влаж­ность.

Предельно допустимая концентрация аэрозоля древесного — угля в воздухе рабочей зоны 6 мг/м3. Минимальная темпера­тура самовоспламенения 340 °С, нижний концентрационный предел воспламенения древесно-угольной пыли в воздухе 128 г/м3.

  1. Отходящие газы от различных аппаратов лесохимических производств содержат значительное количество паров летучих веществ и подлежат очистке с целью предотвращения попада­ния их в атмосферу и регенерации некоторых из них. Газовые выбросы …
  2. Количество промышленных стоков и степень их загрязнен­ности зависят от принятой схемы технологических процессов и на различных заводах колеблются в весьма широких пределах. В частности, при экстракции уксусной кислоты из жижки …
  3. В процессах производства лесохимических продуктов обра­зуются различные сточные воды — отбросные воды ректифика­ционных аппаратов, промывные, подсмольные и подскипидар — ные воды и др. Все они объединяются общим названием про­мышленных стоков …

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *